Bioprecipitation as a Bioremediation Strategy for Environmental Cleanup 37

Government of Canada. 2017. Compare decontamination technologies—Guidance and Orientation for the Selection

of Technologies—Contaminated sites—Pollution and waste management—Environment and natural

resources—Canada.ca. https://gost.tpsgc-pwgsc.gc.ca/Techlst.aspx?lang=eng#wb-auto-5.

Hao, O. J., J. M. Chen, L. Huang and R. L. Buglass. 1996. Sulfate‐reducing bacteria. Crit. Rev. Environ. Sci. Technol.

26(2): 155–187. https://doi.org/10.1080/10643389609388489.

Hao, T., P. Xiang, H. R. Mackey, K. Chi, H. Lu, H. Chui, M. C. M. van Loosdrecht and G.-H. Chen. 2014. A review

of biological sulfate conversions in wastewater treatment. Water Res. 65: 1–21. https://doi.org/10.1016/j.

watres.2014.06.043.

Hengen, T. J., M. K. Squillace, A. D. O’Sullivan and J. J. Stone. 2014. Life cycle assessment analysis of active

and passive acid mine drainage treatment technologies. Resour. Conserv. Recycl. 86: 160–167. https://doi.

org/10.1016/j.resconrec.2014.01.003.

ICF Incorporated. 1995. An introduction to environmental accounting as a business management tool: key concepts

and terms (EPA 742-R-95-001). https://www.epa.gov/sites/default/files/2014-01/documents/busmgt.pdf.

ISO. 2006. ISO 14040:2006(en), environmental management—life cycle assessment—principles and framework.

International Organization for Standardization. https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en.

Janssen, G. M. C. M. and E. J. M. Temminghoff. 2004. In situ metal precipitation in a zinc-contaminated, aerobic

sandy aquifer by means of biological sulfate reduction. Environ. Sci. Technol. 38(14): 4002–4011. https://doi.

org/10.1021/es030131a.

Johnson, D. B. and A. L. Santos. 2020. Biological removal of sulfurous compounds and metals from inorganic

wastewaters. pp. 215–246. In: P. Lens [ed.]. Environmental Technologies to Treat Sulfur Pollution: Principles

and Engineering (Second Edition). IWA Publishing.

Kaksonen, A. H. and J. A. Puhakka. 2007. Sulfate reduction based bioprocesses for the treatment of acid mine

drainage and the recovery of metals. Eng. Life Sci. 7(6): 541–564. https://doi.org/10.1002/elsc.200720216.

Karpiński, P. H. and J. Bałdyga. 2019. Chapter 8: precipitation processes. pp. 216–265. In: A. S. Myerson, D. Erdemir

and A. Y. Lee. [eds.]. Handbook of Industrial Crystallization (3rd Edition). Cambridge University Press. https://

www-cambridge-org.qe2a-proxy.mun.ca/core/books/handbook-of-industrial-crystallization/precipitation-pro

cesses/011386C77A45C4AAAFD4DE1B2FE0D609.

Kawaguchi, T. and A. W. Decho. 2002. A laboratory investigation of cyanobacterial extracellular polymeric secretions

(EPS) in influencing CaCO3 polymorphism. J. Cryst. Growth. 240(1): 230–235. https://doi.org/10.1016/

S0022-0248(02)00918-1.

Kiran, M. G., K. Pakshirajan and G. Das. 2017. An overview of sulfidogenic biological reactors for the simultaneous

treatment of sulfate and heavy metal rich wastewater. Chem. Eng. Sci. 158: 606–620. https://doi.org/10.1016/j.

ces.2016.11.002.

Kiskira, K., S. Papirio, E. D. van Hullebusch and G. Esposito. 2017. Fe(II)-mediated autotrophic denitrification:

a new bioprocess for iron bioprecipitation/biorecovery and simultaneous treatment of nitrate-containing

wastewaters. Int. Biodeterior. Biodegrad. 119: 631–648. https://doi.org/10.1016/j.ibiod.2016.09.020.

Kosolapov, D. B., P. Kuschk, M. B. Vainshtein, A. V. Vatsourina, A. Wießner, M. Kästner and R. A. Müller. 2004.

Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands. Eng.

Life Sci. 4(5): 403–411. https://doi.org/10.1002/elsc.200420048.

Kumar, N., R.-M. Couture, R. Millot, F. Battaglia-Brunet and J. Rose. 2016. Microbial sulfate reduction enhances

arsenic mobility downstream of zerovalent-iron-based permeable reactive barrier. Environ. Sci. Technol.

50(14): 7610–7617. https://doi.org/10.1021/acs.est.6b00128.

Kumar, R., M. Nongkhlaw, C. Acharya and S. R. Joshi. 2013. Bacterial community structure from the perspective

of the uranium ore deposits of domiasiat in India. Proceedings of the National Academy of Sciences, India

Section B: Biological Sciences. 83(4): 485–497. https://doi.org/10.1007/s40011-013-0164-z.

Kuppusamy, S., N. R. Maddela, M. Megharaj and K. Venkateswarlu. 2020. Total Petroleum Hydrocarbons:

Environmental Fate, Toxicity, and Remediation. Springer International Publishing. https://doi.org/10.1007/978­

3-030-24035-6.

LaGrega, M. D., P. Buckingham and J. Evans. 1994. Hazardous Waste Management (Second Edition). Waveland

Press, Inc.

Levett, A., E. J. Gagen, Y. Zhao, P. M. Vasconcelos and G. Southam. 2020. Biocement stabilization of an experimental-

scale artificial slope and the reformation of iron-rich crusts. Proceedings of the National Academy of Sciences.

117(31): 18347–18354. https://doi.org/10.1073/pnas.2001740117.

Lewis, A. 2017. Precipitation of heavy metals. pp. 101–120. In: E. R. Rene, E. Sahinkaya, A. Lewis and P. N. L. Lens

[eds.]. Sustainable Heavy Metal Remediation: Volume 1: Principles and Processes. Springer International

Publishing. https://doi.org/10.1007/978-3-319-58622-9_4.

Liamleam, W. and A. P. Annachhatre. 2007. Electron donors for biological sulfate reduction. Biotechnol. Adv. 25(5):

452–463. https://doi.org/10.1016/j.biotechadv.2007.05.002.